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Abstract
We discuss a new numerical method for the determination of excited states
of a quantum system using a generalization of the Feynman–Kac formula.
The method relies on introducing an ensemble of non-interacting identical
systems with a fermionic statistics imposed on the systems as a whole, and on
determining the ground state of this fermionic ensemble by taking the long-time
limit of the Euclidean kernel. Due to the exclusion principle, the ground state
of an n-system ensemble is realized by the set of individual systems occupying
successively the n lowest states, all of which can therefore be sampled in this
way. To demonstrate how the method works, we consider a one-dimensional
oscillator and a chain of harmonically coupled particles.

PACS numbers: 0270S, 0270T, 0365, 0510L, 0530

1. Introduction

A central object in the lattice formulation of field theory is the Euclidean kernel, which is
obtained from the quantum amplitude by a Wick rotation. For a d-dimensional quantum field
theory, the Euclidean kernel can be interpreted as a partition function for a (d +1)-dimensional
classical statistical theory. This theory can then be put on a lattice and simulated by Monte
Carlo methods.

The Euclidean kernel contains all the information about the quantum system, including
in particular the excited states which in field theory correspond to particle states. Standard
methods of extracting this information from numerical lattice data, commonly used for instance
in QCD lattice spectroscopy, are based on the analysis of the long-time behaviour of the
Euclidean kernel [1].

In this paper, we present a new method of determining excited states by studying the
long-time behaviour of the Euclidean kernel for an ensemble of identical systems with a
fermionic statistics. The trick of using a fermionic ensemble of systems allows us to subtract
the contribution from the ground state and focus directly on the contribution from the lowest
excited state. The method can be recursively extended to the next excited states.

0305-4470/01/193947+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 3947
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The first part of the paper contains standard material, which we recall here mainly to
introduce the notation for the second part of the paper. In this second part, we discuss the
new method and present results obtained from applying it to the cases of a single harmonic
oscillator and of a one-dimensional chain of coupled particles.

We write most of our formulae in a quantum mechanical framework, which corresponds to
a zero-dimensional (d = 0) quantum field theory. The generalization to (d > 0)-dimensional
cases is straightforward and does not require a modification of the method or the underlying
idea, although as we shall see some practical limitations occur in this case, which are related
to the sign problem.

2. Standard methods

The Euclidean kernel is defined as

Kτ(qf |qi) = 〈qf |e−τH |qi〉 =
∑
n=0

φ∗
n(qf)φn(qi) e−τEn (1)

where φn(q) = 〈q|n〉 are eigenvectors of the Hamiltonian H |n〉 = En|n〉 ordered by En,
E0 � E1 � . . . . The parameter τ is real and non-negative. We set h̄ = 1. The kernel can be
expressed as a sum over paths propagating in time from an initial position qi at some initial
time τi to a final position qf at some later time τf , τ = τf −τi � 0 [2,3]. Using the composition
rule

Kτ+σ (qf |qi) =
∫

dq Kτ (qf |q) Kσ (q|qi) (2)

and applying it many times to equal time intervals ε (Nε = τ ), one finds

Kτ(qf |qi) =
∫ N−1∏

j=1

dqj
N∏
k=1

Kε(qk|qk−1) (3)

where qf = qN and qi = q0. As it stands, the formula (3) is of not much practical use, since
the same unknown function K appears on both sides of the equation. The idea is now to
use an approximation for small ε, replacing on the right-hand side Kε with the semi-classical
propagator Kε . As an example, consider a quantum mechanical system with the Hamiltonian
H = p2/2 + V (q), which describes a particle in D dimensions. Then the semi-classical
propagator Kε is for small ε given by

Kε(qk|qk−1) = (2πε)−D/2 e−ε�Sk (4)

where

�Sk = 1

2

(qk − qk−1

ε

)2
+ V (qk). (5)

Using this, we can approximate the kernel (3) for finite τ = Nε by

K(qf |qi) ≈
∫ N−1∏

j=1

dqj
N∏
k=1

Kε(qk|qk−1) =
∫
Dq e−S (6)

where

Dq = (2πε)−ND/2
N−1∏
j=1

dqj = C
N−1∏
j=1

dqj S = ε
N∑
k=1

�Sk. (7)

For given N and ε, the factor C is just a global normalization. In the limit N → ∞ with
τ = Nε = const, the formula (6) approaches the exact one (3). Because the composition
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rule (3) holds already before the Wick rotation is done, one can use formula (3) to perform
calculations of the kernel directly in the real time. In this case one has to approximate the short
time kernel by a finite matrix. It turns out, however, that this approximated matrix properly
encodes the information about the lowest excited states [4].

The expression (6) can be viewed as a partition function for a classical field {qj } on a
one-dimensional lattice, j = 0, . . . , N , weighted by the exponent of the Euclidean action:
Dq e−S . One can simulate such an ensemble of {qj } using standard Monte Carlo techniques.
It is convenient to impose periodic boundary conditions, i.e. to set q0 = qN = q, and then to
sum over q. The partition function for the ensemble of such periodic chains is

Z =
∫ N∏
j=1

dqj
N∏
k=1

Kε(qk|qk−1) =
∫

periodic q
Dq e−S. (8)

This function serves as an approximation of the quantum mechanical expression∫
dq Kτ (q|q) =

∫
dq e−τE0

{|φ0(q)|2 + |φ1(q)|2e−τ(E1−E0) + · · · }. (9)

On the one hand, the integrand dq Kτ (q|q) corresponds to the probability distribution of
positions q in the quantum system, but on the other hand it also describes the probability
distribution of particle positions qk in the ensemble of classical chains. For each particle
of the chain the distribution is the same because the partition function is translationally
invariant. In the large-τ limit, the integrand dq Kτ (q|q) → dq e−τE0 |φ0(q)|2 is dominated
by the contribution from the ground state. This is commonly known as the Feynman–Kac
formula. The distribution of particle positions can be measured in Monte Carlo simulations
of the classical chains. This can serve as a practical method for determining the ground state
|φ0(q)|2 of the quantum system.

In the same way, one can also measure the energy of the ground state. For each time slice k
define an estimator of the classical energy: Ek = Tk +Vk , where Vk = V (qk) and Tk denote the
potential and kinetic parts, respectively. The matrix elements of the squared momentum p2

are given by (qk+1 − qk)(qk − qk−1)/ε
2; therefore, the kinetic energy Tk depends in principle

on three time slices. However, we can also introduce a one-slice operator for Tk by making
use of the virial theorem, which tells us that on average 〈Tk〉 = 1

2 〈qkV ′(qk)〉. The operator on
the right-hand side, qkV ′(qk), is a one-slice operator and so, with these definitions, is now Ek .

Denote the average over paths weighted by (8) by 〈· · ·〉. The average 〈Ek〉 does not
depend on k, so we can average over slices E = 1

N

∑
k Ek to obtain an estimator with a

smaller statistical error. In the large-τ limit,

〈E〉 = E0 + (E1 − E0)e
−τ(E1−E0) + · · · (10)

approaches the ground-state energyE0. Since the average on the left-hand side can be measured
in the ensemble of chains, we thus have a method for computing E0.

In the MC simulations one is restricted to chains of finite length N . In order to increase
τ = Nε for finite N , one has to increase ε. This introduces systematic errors since the
deviations between Kε and Kε grow with ε. Moreover, a small deviation from Kε may
accumulate and become amplified in the convolution of N such factors in the time interval
τ = Nε (6). This error can be reduced by including higher-order corrections in ε to Kε (4) by
replacing the action (5) with a sort of improved action [5]:

�Sk → �S
impr
k = �Sk + 1

24ε
2(V ′(qk))2 + · · · (11)

which can be obtained by introducing higher-order corrections from the Baker–Campbell–
Hausdorff formula in the semi-classical approximation (4). One can now make an optimal
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choice of N and ε so as to balance the systematic and statistical errors. As it stands, the
method may be applied only to the ground state since the contributions from higher states
in (9) and (10) are exponentially suppressed.

To determine the first excited state from the path integral approach, one has to remove
the leading contribution. In the standard method this is done by calculating connected
correlation functions for two different time slices ka and kb that are separated by a time interval
�τ = τb−τa = ε(kb−ka). For any one-slice operator O one measures the correlation function
〈O(τa)O(τb)〉 in the ensemble of chains, which is related to the following expression in the
quantum system:

〈O(τa)O(τb)〉 = 1

Z

∑
m,n

e−(τ−�τ)Em〈m|O|n〉e−�τEn〈n|O|m〉. (12)

In the limit of large τ , i.e. τ � �τ , only the contribution from the ground state |m〉 = |0〉
survives in the sum. One obtains in this limit

〈O(τa)O(τb)〉 =
∞∑
n=0

∣∣〈0|O|n〉∣∣2
e−�τ(En−E0). (13)

The first term in the sum, |〈0|O|0〉|2, is independent of�τ and can be subtracted by calculating
the connected correlator:

〈〈O(τa)O(τb)〉〉 = 〈O(τa)O(τb)〉 − 〈O(τa)〉〈O(τb)〉. (14)

For large �τ this is dominated by

〈〈O(τa)O(τb)〉〉 = |〈0|O|1〉|2e−�τ(E1−E0) + · · · . (15)

Thus, the difference E1 − E0 can be numerically determined by measuring the exponential
fall-off of the correlation function (15) for large �τ . The freedom one has in choosing the
operator O should be used in practice to maximize the coefficent |〈0|O|1〉|2 relative to the
coefficients for higher states n > 2.

It is clear from the discussion above that this method requires a large separation of
timescales 0 � �τ � τ . This is a strong practical restriction. Moreover, computations
of connected correlation functions are in general much more time consuming than calculations
of averages. An additional difficulty arises from the fact that the signal-to-noise ratio is usually
very small in the region of large�τ , where one has to carry out measurements of the exponential
fall-off coefficient, E1 − E0.

To summarize, this method is much more demanding in computer power than the procedure
for determining the energy of the ground state that we described before.

3. Antisymmetrization over systems

We now propose another way of subtracting the contribution from the ground state. We first
consider an ensemble consisting of two non-interacting identical systems, with a fermionic
statistics imposed on the systems as a whole. The Pauli principle then forbids the two individual
systems to be in the same state simultaneously. Thus, the ground state of the ensemble
corresponds to one of the sub-systems being in its ground state and the other one occupying
the lowest excited state.

Denote the two systems byQ andR. They are independent and indistinguishable. Impose
the fermionic statistics on them by defining the propagator for the twin system, K̂(2), as the
antisymmetrization of the individual propagators:

K̂(2)τ (qf , rf |qi, ri) = 1

2!
{Kτ(qf |qi)Kτ (rf |ri)−Kτ(rf |qi)Kτ (qf |ri)} . (16)
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It follows from (2) that this function fulfills the same kind of composition rule:

K̂(2)τ+σ (qf , rf |qi, ri) =
∫

dq dr K̂(2)τ (qf , rf |q, r)K̂(2)σ (q, r|qi, ri). (17)

Thus, we can repeat the same approximation scheme as for the individual propagators (6). We
obtain

K̂(2)τ (qf , rf |qi, ri) ≈
∫ N−1∏

j=1

dqj drj
N∏
k=1

K̂(2)ε (qk, rk|qk−1, rk−1) (18)

where

K̂(2)ε (qk, rk|qk−1, rk−1) = 1

2!
{Kε(qk|qk−1)Kε(rk|rk−1)−Kε(rk|qk−1)Kε(qk|rk−1)} . (19)

Now we can define the partition function for the QR ensemble with periodic boundary
conditions, analogously to (8). The partition function is related to the underlying quantum
mechanical quantities as follows:

Ẑ(2) =
∫

dq dr K̂(2)τ (q, r|q, r)

=
∫

dq dr e−τ Ê(2)0
{|#̂(2)0 (q, r)|2 + |#̂(2)1 (q, r)|2e−τ(Ê(2)1 −Ê(2)0 ) + · · · }

→ e−τ Ê(2)0

∫
dq dr |#̂(2)0 (q, r)|2 (20)

where now #̂(2)k (q, r) are wavefunctions of the twin system and Ê(2)k are the corresponding
energy levels. The wavefunctions are constructed as Slater determinants of the wavefunctions
of the individual systems. In particular, the ground state is #̂(2)0 (q, r) = 1√

2!
{φ0(q)φ1(r) −

φ1(q)φ0(r)}, and its energy is given by Ê(2)0 = E0 + E1. This provides us with a practical
method of determining the lowest excited state |φ1(q)|2 and the corresponding energyE1. The
probability distribution of positions in one of the two systems, P (2)(q), can be expressed in
terms of the wavefunctions of the individual system:

P (2)(q) =
∫

dr |#̂(2)0 (q, r)|2 = 1
2

{|φ0(q)|2 + |φ1(q)|2
}
. (21)

Both P (2)(q) and P (1)(q) = |φ0(q)|2 can be measured numerically using the MC method, and
we can put them together to find

|φ1(q)|2 = 2P (2)(q)− P (1)(q). (22)

Similarly, by subtracting the ground-state energy E0 of an individual system from the ground-
state energy Ê(2)0 of the twin system we can determine the energy E1 = Ê(2)0 − E0 of the first
excited state of the individual system.

This method can be extended recursively to determine higher excited states as well.
Namely, the energy Ek of the kth excited state can be computed as Ek = Ê

(k+1)
0 − Ê(k)0 ,

the difference of the ground-state energies of the ensembles composed of k and k − 1
antisymmetrized copies of the individual system, respectively. Similarly, for the kth excited
state,

|φk(q)|2 = (k + 1)P (k+1)(q)− kP (k)(q) (23)

where P (k) is an appropriately normalized probability distribution

P (k)(q) =
∫

|#̂(k)0 (q, r, s, . . .)|2 dr ds . . . (24)

for the ensemble of k antisymmetrized copies. In the Monte Carlo simulations of the ensemble
of k copies, the probability distribution P (k)(q) is measured straightforwardly as a probability
distribution of particle positions q in one of the k copies.
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Figure 1. The histograms show the numerical results forP2(q) andP1(q) from the MC simulations.
The solid curve represents the theoretical curve |φ0(q)|2.

4. Results

Let us first illustrate how this method works for the one-dimensional harmonic oscillator:
V (q) = q2/2. In figure 1 we show the probability distributionsP (1)(q) = |φ0(q)|2 andP (2)(q)
in simulations with a single system and with the ensemble of two antisymmetrized copies, for
N = 128 and ε = 0.0625 (corresponding to τ = 8). The solid curve going through the data
points of P (1)(q) is given by the ground-state function of the oscillator: |φ0(q)|2 = 1√

π
e−q2

.

The difference between the two numerically obtained curves 2P (2)(q)− P (1)(q) is shown in
figure 2, where it is compared to the function |φ1(q)|2 = 2√

π
q2e−q2

, which describes the first
excited state squared of the oscillator. The agreement is perfect.

Physically, the appearance of the valley in the P (2)(q) distribution results from the
fermionic repulsion between the two systems. The difference |φ1(q)|2 = 2P (2)(q)− P (1)(q)
leads to a zero value of the probability.

The measured values of the energy of the ground state are E0 = 0.501(3) and E(2)0 =
2.006(6), which gives E1 = 1.505(7) in agreement with En = n + 1

2 .
The method also works very well for higher excited states. As an example we

show, in figure 3, the probability distributions P (4)(q) and P (3)(q) and, in figure 4, the
difference 4P (4)(q) − 3P (3)(q). The resulting curve is compared to the function |φ3(q)|2 =

1
233!

1√
π
H 2

3 (q)e
−q2

, where H3(q) = 8q3 − 12q is the third Hermite polynomial, drawn as a
solid line. Again, the agreement is very good.

As a second example, consider now a one-dimensional chain of harmonically coupled
particles with the Hamiltonian

H =
n∑
j

[
1

2
p2
j +

1

2ε2
(qj − qj−1)

2 + V (qj )

]
. (25)

The index j runs over positions in the chain. The harmonic coupling constant between
neighbours is 1/ε2. As before, using the path integral formulation we first write the kernel as a
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Figure 2. The histogram shows the normalized difference 2P2(q)−P1(q) of the data from figure 1.
The solid curve represents the theoretical curve |φ1(q)|2.
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Figure 3. Numerical results for P4(q) and P3(q).

convolution ofN propagators (3), and then approximateKε → Kε in the limit ε → 0. Similarly
to (6), we obtain a classical partition function for the ensemble of fields qk,j , distributed now
on a two-dimensional lattice and weighted by the action

SE =
∑
(k,j)

1

2

(
qk+1,j − qk,j

ε

)2

+
1

2

(
qk,j+1 − qk,j

ε

)2

+ V (qk,j ) (26)

with the integration measure ∼ ∏
dqk,j (6), where the index k runs over time slices. Note
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Figure 4. The normalized difference 4P4(q)− 3P3(q) of the data from figure 3. The solid curve
represents the theoretical curve |φ3(q)|2.

that despite the apparent similarity, the two parameters ε and ε have a different meaning: the
former is a time-slicing parameter, whereas the latter is a harmonic constant of the chain.

One way of looking at the chain is from a quantum mechanical perspective. In this case
one fixes the harmonic constant ε and for given τ makes the time-slicing dense, N → ∞ and
ε = τ/N → 0. Alternatively, one can adopt a field-theoretical viewpoint by re-interpreting
the parameter ε as a spatial lattice constant and keeping it proportional to ε: c = ε/ε = const.
In this case, the pair (k, j) can be viewed as a spacetime index. In the naive continuum limit
ε → 0, the two terms in the sum (26) become a Lorentz (rotationally) invariant expression
(∂tq)

2 + c2(∂xq)
2, and therefore so does the whole theory. Thus, the expression (26) can

be regarded as a discretization of the Euclidean action of a field theory, and the partition
function as the Euclidean kernel of a quantum field theory. We see that the prescription for
the quantization of the theory is almost the same as in quantum mechanics. It is commonly
treated as a non-perturbative definition of quantum field theory.

A difference between quantum mechanics and field theory appears, however, when one
wants to introduce the ε corrections. The formula (11), which works for quantum mechanics,
does not work for quantum field theory since it breaks the symmetry between space and time.
For quantum field theory one therefore has to use a different scheme (an ‘improved action’)
to introduce lattice spacing corrections to the action which preserve the Lorentz invariance of
the underlying continuum theory [6].

Here we will consider only the simplest case, namely a quantum chain with the potential
V (q) = q2/2, which we simulate on a periodic (1 + 1)-dimensional lattice with N nodes in
the temporal direction and n in the spatial one. To each node we assign an appropriate particle
displacement q.

The spectrum of this simple Hamiltonian is known. For convenience, we will write
formulae only for odd n = 2A+ 1. The Hamiltonian can be diagonalized in the Fourier modes
Qα , α = 0, 1, . . . , A. The modes for α > 0 are twice degenerate, each having a left mover
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Table 1. The mass gap m for various N and n (τ = 5, ε = 1).

N n = 1 2 3 5 7

16 0.981(3) 0.967(2)
32 1.001(3) 0.993(4)
64 1.001(3) 0.998(2) 1.001(7) 1.00(5) 1.04(7)

128 0.995(3) 1.02(3)

Table 2. The average sign for various N and n (τ = 5, ε = 1).

N n = 1 2 3 5 7

16 1 0.2221(3)
32 1 0.0912(5)
64 1 0.2044(6) 0.0436(4) 0.0120(3) 0.0104(3)

128 1 0.026(1)

and a right mover. The frequencies of the modes are

ωα =
√

1 +
4

ε2
sin2 πα

n
α = 1, . . . , A. (27)

This leads to a ground-state (vacuum) energy

E0 = 1
2 +

A∑
α=1

ωα (28)

and the following energies of one-particle states, numbered by the Fourier mode index α:

�E1(α) = E1(α)− E0 = ωα (29)

where the particle mass is m = �E1(0) = 1.
For α � n, the equation (29) reproduces the standard formula �E1 =

√
m2 + p2 with

the momentum p = 2πα/(εn).
The mass m can be calculated as the difference between the ground-state energy of the

fermionic twin system and that of one individual system. In practice, for finite τ such an
estimator also includes contributions from non-zero momentum states. Although they vanish
exponentially with τ , for finite τ they may systematically lead to results that are somewhat
overestimated4. To minimize this unwanted effect one should concentrate the analysis only on
the zero-momentum mode Q = Qα=0. The effective action density for the zero-momentum
mode is given by (5), with q replaced by the zero modeQ.

To determine the energy ofQ, we simulate the whole (1+1)-dimensional system, estimate
for finite τ the probability that the system is in the zero momentum mode and measure quantities
related toQ only. The results are summarized in tables 1 and 2.

Table 1 contains the results for the particle mass. As we can see, the results agree with
the theory; in other words, the method works. Unfortunately, the method is limited by the
sign problem, which enters the game as a result of the antisymmetrization (19), causing the
integrand of (18) to not be positive in general. It forces us to first change the MC weights
by taking their absolute value |K̂| of the integrand in (18), use these modified weights in the

4 The effect grows with n because the energy separation of momentum modes decreases as n increases. For example,
at τ = 5 the maximal effect we measured was of order 10% for n = 7.
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simulations and then eventually to include the sign of K̂ in the estimators of the measured
quantities:

〈O〉 = 〈O sgn (K̂)〉|K̂|
〈sgn (K̂)〉|K̂|

. (30)

The sole exception to this is the quantum system with only one degree of freedom, for
which it is possible to show that the sign of the weights is always positive due to cancellations
appearing in the two-step transfer matrix.

Generically, one expects the sign problem to create an exponential growth in the computer
demands both in n andN , because the computer time required is roughly inversely proportional
to the average sign, which typically approaches zero exponentially. To test this, we measured
the average sign as a function of n andN . As one can see from table 2, it does indeed decrease
with growing N . On the other hand, as can be also seen in the table, for small N the sign is
far from zero, but then the results for the particle mass are biased by systematic errors. It is a
practical question whether there exists a window in N that has both small enough systematic
errors and a large enough average sign. This might be the case for systems which have excited
states with relatively large masses that decay over a small number of time slices, such as for
instance SU(3) [7].

5. Conclusions

In conclusion, we presented a new method for the determination of excited states in quantum
mechanical systems. For quantum mechanics with one degree of freedom, the method allows
us to determine recursively the lowest states and their energy. The method can be extended to
systems with more degrees of freedom, but in doing so one encounters the sign problem which
in many cases can create practical limitations. It may be that applying the recent ideas for
defeating the sign problem [8] to the method presented here would lead to an efficient method
for field theoretical applications as well.
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